Material science for quantum computing with atom chips
نویسنده
چکیده
In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than 10 gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir-Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.
منابع مشابه
Towards quantum computing with single atoms and optical cavities on atom chips
We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scal...
متن کاملExploring surface interactions with atom chips
We review the current status of the field of atom-surface interactions, with an emphasis on the regimes specific to atom chips. Recent developments in theory and experiment are highlighted. In particular, atom-surface interactions define physical limits for miniaturization and coherent operation. This implies constraints for applications in quantum information processing or matter wave interfer...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملEffect of vortices on the spin-flip lifetime of atoms in superconducting atom-chips
We study theoretically the lifetime of magnetically trapped atoms in the close vicinity of a type-II superconducting surface, in the context of superconducting atom-chips. We account for the magnetic noise created at the cloud position by the vortices present in the superconductor and give specific results for our experiment which uses a niobium film. Our main result is that atom losses are dom...
متن کاملA simple quantum gate with atom chips
We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips. PACS. 03.67.Lx Quantum computati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information Processing
دوره 10 شماره
صفحات -
تاریخ انتشار 2011